Coke Ratio Prediction Based on Immune Particle Swarm Neural Networks

نویسندگان

  • Yang Kai
  • Jin Yonglong
چکیده

The clonal selection mechanism and vaccination strategy of immune system are introduced into particle swarm optimization algorithm in this paper, in order to enhance the ability of global exploration of PSO, avoiding getting into local optimum and improving the accuracy and convergence speed of BP networks. The global Cauchy mutation operator and local Gauss mutation operator are used to improve the ability of searching global optimization and the accuracy of local optimization. Then the weights and thresholds of neural networks are trained by applying the immune particle swarm optimization. Finally the coke ratio forecasting model is established based on the modified BP neural networks optimized by immune particle swarm optimizer. The result shows the forecast accuracy is more accurate than both the BP neural networks optimized by the standard PSO and the traditional BP neural networks, and provides an effective way to reduce the coke ratio and achieve energy conservation and emission reduction for iron and steel enterprise.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Traffic Signal Prediction Using Elman Neural Network and Particle Swarm Optimization

Prediction of traffic is very crucial for its management. Because of human involvement in the generation of this phenomenon, traffic signal is normally accompanied by noise and high levels of non-stationarity. Therefore, traffic signal prediction as one of the important subjects of study has attracted researchers’ interests. In this study, a combinatorial approach is proposed for traffic signal...

متن کامل

Prediction of Gain in LD-CELP Using Hybrid Genetic/PSO-Neural Models

In this paper, the gain in LD-CELP speech coding algorithm is predicted using three neural models, that are equipped by genetic and particle swarm optimization (PSO) algorithms to optimize the structure and parameters of neural networks. Elman, multi-layer perceptron (MLP) and fuzzy ARTMAP are the candidate neural models. The optimized number of nodes in the first and second hidden layers of El...

متن کامل

Prediction of Gain in LD-CELP Using Hybrid Genetic/PSO-Neural Models

In this paper, the gain in LD-CELP speech coding algorithm is predicted using three neural models, that are equipped by genetic and particle swarm optimization (PSO) algorithms to optimize the structure and parameters of neural networks. Elman, multi-layer perceptron (MLP) and fuzzy ARTMAP are the candidate neural models. The optimized number of nodes in the first and second hidden layers of El...

متن کامل

Stock Index Prediction Based on the PSOPI - BP Neural Network ⋆

In order to improve the prediction ability of the Neuron Network in stock index prediction, we proposed an improve particle swarm neural network algorithm. The Particle Swarm Optimization algorithm based on Parasitic Immune (PSOPI) was used to optimize combination weights of BP neural network model parameters. The BP algorithm was also to obtain the parameters of network further accurate. Final...

متن کامل

Prediction of true critical temperature and pressure of binary hydrocarbon mixtures: A Comparison between the artificial neural networks and the support vector machine

Two main objectives have been considered in this paper: providing a good model to predict the critical temperature and pressure of binary hydrocarbon mixtures, and comparing the efficiency of the artificial neural network algorithms and the support vector regression as two commonly used soft computing methods. In order to have a fair comparison and to achieve the highest efficiency, a comprehen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015